高反度对定的素组化溴法氧应温影响一同位五氟成测
五氟化溴法在分析氧化物和硅酸盐矿物的高反氧同位素组成时,反应温度与反应时间是应温氧同关键要素。(目的度对的影)在保证反应时间的前提下,研究较高反应温度条件(550~800℃)对五氟化溴法氧同位素组成分析的氟化影响。(方法)在高反应温度条件下对国家标准物质GBW04409进行氧同位素样品制备与同位素组成分析表明:(结果)反应温度在550~675℃,溴法响获得了较足量的位素O2产率,δ18O集中在10.4‰~11.8‰范围,组成准确度较高;反应温度高于700℃后,测定O2产率降低,高反δ18O分布在10.8‰~26.8‰范围,应温氧同δ18O产生明显的度对的影正偏差;通过分次氟化反应、合并收集气体的氟化方式获得了与标准物质推荐值相吻合的δ18O分析结果。(结论)在高于700℃的溴法响反应温度条件下,BrF5与镍反应器发生反应,位素增加了试剂消耗。组成由于BrF5试剂量不足,导致O2产率偏低从而引起氧同位素分馏。
稳定同位素分析方法研究是稳定同位素地球化学的重要组成部分,它是开展同位素理论及应用的实验基础。目前已发现的矿物中,氧化物矿物已逾200种,在地壳中广泛分布;发现的硅酸盐矿物有600余种,约占已知矿物种的1/4,是三大类岩石的主要造岩矿物(潘兆橹等,1994)。氧化物及硅酸盐矿物中的氧同位素组成研究可获得成岩成矿物质来源(卢琦园等,2018;梁维,2019;赵如意等,2020)、成因(姜军胜等,2015)、演化(郝光明等,2020)等重要信息,是揭示地壳中各类地质、地球化学过程的重要手段之一。自Clayton and Mayeda(1963)建立了硅酸盐及氧化物等矿物五氟化溴(BrF5)氧同位素分析方法以来,因其具有较高的分析精度,使得该分析方法和实验装置能够在氧同位素地球化学应用中得以不断完善和改进(Clayton,1986;丁悌平等,1988,李延河等,1992;张建锋等,2021),并成为经典的氧同位素分析方法。
当前用于岩石和矿物中氧同位素组成的分析方法,主要有五氟化溴法、激光氟化法(Laser-fluorination)以及二次离子质谱法(SIMS)。五氟化溴法是在真空条件下,试样与BrF5试剂在恒温加热环境下发生氧化反应释放出O2,直接对O2(张建锋等,2021)或转化为CO2(Clayton and Mayeda,1963;李延河等,1992)收集,用气体同位素质谱仪进行氧同位素分析;激光氟化法是在真空腔体内,通过红外激光器对镍反应盘内的试样进行高温加热,并与预先引入的BrF5试剂发生氧化反应释放出O2,通过分子筛吸附收集,引入气体同位素质谱仪进行氧同位素组成分析(Sharp,1990;龚冰和郑永飞,2003;高建飞和丁悌平,2007;刘熙等,2016);二次离子质谱法是利用热电离铯源产生133Cs+一次离子轰击样品表面,使小部分粒子电离,二次离子经样品表面高压加速后进入质谱仪按荷质比进行分离,并通过法拉第杯对16O-和18O-进行接收,经标准样品校正后计算其氧同位素组成(Valley et al.,1998;周丽芹等,2012;王润等,2013)。由于岩石和矿物中的氧同位素组成分析的标准物质多采用五氟化溴法进行定值,这使得激光氟化法(Laser-fluorination)和二次离子质谱法(SIMS)所得实验数据均与之进行比较,评价其准确度。
BrF5氧同位素组成分析方法虽然测试精度较高,但实验影响因素较多。已有研究者对真空系统气密性(李延河等,1992)、环境湿度(郑淑蕙等,1986,李延河等,1992;张建锋等,2019)、样品纯度(李延河等,1992)、氟化试剂纯度(李延河等,1992;万德芳和李延河,2006)、测试气体对象(李延河等,1992;龚冰和郑永飞,2003;Mattey and Macpherson,1993)、反应温度及反应时间(Clayton and Mayeda,1963;Garlick and Epstein,1967;李延河等,1992;石晓等,2018)等对氧同位素组成分析的影响进行了研究与报道。Garlick and Epstein(1967)报道指出,由于反应温度或反应时间不足,造成样品中的氧提取不完全而导致的产率偏低,会引起分析结果产生负偏差,由于氟化试剂不足导致的产率偏低会引起分析结果产生正偏差;袁维玲等(1996)认为样品与BrF5反应过程的影响因素,反应温度是主要的,而反应时间是次要的,但两者之间需要适当调节。高的反应温度会加快化学反应进程,尤其对于化学反应速度缓慢、反应时间较长的石榴子石、橄榄石、绿帘石、蓝晶石及磁铁矿等高温难熔矿物。以往对于高反应温度对岩石和矿物中氧同位素组成分析结果的影响研究报道较少,Clayton and Mayeda(1963)认为在700℃下,未见BrF5分解的证据,并且在此温度下,BrF5与镍反应器反应不太明显;袁维玲和潘飞云(1996)提及温度过高会加剧BrF5与镍金属材料的反应;陈忠民(1990)提到反应温度过高,试剂腐蚀反应器,且析出的氧与反应器内壁反应生成氧化物,上述观点均缺乏系统性实验证据,给实验研究人员参考带来不便。因此,本文以用于岩石和矿物氧同位素组成分析进行质量监控的国家标准物质GBW04409(石英)为研究对象,开展高温条件下BrF5氧同位素组成分析实验,探讨高反应温度对氧同位素组成分析的影响,确定岩石和矿物BrF5法氧同位素组成分析的反应温度上限范围,为获取高精密度、高准确度的实验结果提供参考依据。
1.实验部分
1.1实验原理
在真空条件下,将一定量的含氧矿物或岩石试样与BrF5试剂在恒温加热条件下进行氟化反应释放出O2,将生成的O2与其他副产物分离、纯化后,使用5Å分子筛对O2进行收集,解吸后引入气体同位素质谱仪的双路进样系统进行氧同位素组成分析。
天然物质中氧同位素组成通常用δ18 O表示,为了便于国际比较,通过样品与国家标准物质GBW 04409(石英)δ18 O值的比较测量,将样品δ18 O值转换成相对国际标准V-SMOW的δ18 OV-SMOW值。
声明:本文所用图片、文字来源《地球科学》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系删除。
相关链接:五氟化溴,氧化物,同位素
(责任编辑:知识)
-
中国消费者报北京讯记者任震宇)《中国消费者报》记者3月24日获悉,中国消费者协会“企业售后服务电话查验宝”升级更名为“企业服务联系方式查验宝”简称仍为“查验宝”)。随着名称调整,“查验宝”的服务范围也 ...[详细]
-
第九章核心机制与招架武学定位 ...[详细]
-
崩坏3梅比乌斯最强阵容搭配推荐深渊战场通用组合与实战技巧全面解析
梅比乌斯作为崩坏3中极具特色的量子属性机械角色,凭借召唤物协同作战与高频持续输出机制,在深渊与战场中展现出极强的适应性。将从角色特性、阵容构建逻辑、实战操作细节三个维度,深度解析梅比乌斯的顶级配队策略 ...[详细]
-
全民突击第三章第三关狭路英豪三星通关技巧与BOSS战打法详解
关卡核心机制与三星条件解析 ...[详细]
-
聚焦:部分中小银行上调存款利率,个人养老金市场迎来发展新阶段
个人养老金市场迎来发展新阶段:在36城先行试点两年后,个人养老金制度正式向全国推开。根据人力资源社会保障部、财政部、税务总局、金融监管总局、中国证监会日前联合印发的《关于全面实施个人养老金制度的通知》 ...[详细]
-
在元气骑士中,食物类道具是提升角色生存能力的重要辅助品,其中烤萝卜作为一种基础食物,具备恢复生命值的实用效果。将烤萝卜的合成逻辑、材料获取技巧以及实战应用策略,帮助玩家高效解锁这一道具。 ...[详细]
-
这不是汉字作为一款融合汉字解谜与传统文化元素的创意游戏,其「金莲装睡」关卡凭借独特的机制设计成为玩家热议的焦点。该关卡要求玩家通过观察场景细节、破解文字谜题,唤醒装睡的金莲角色。将唤醒逻辑与通关策略, ...[详细]
-
汽车燃烧吧我的大脑第18关通关秘诀详解 破解技巧与步骤完整指南
汽车燃烧吧我的大脑作为一款融合物理引擎与逻辑解谜的创意手游,其第18关因复杂的场景互动和隐蔽的触发机制成为玩家公认的难点关卡。本关要求玩家在限定时间内通过精准操作引发连锁反应,最终实现车辆爆破目标。将 ...[详细]
-
2025年4月24日辟谣:编造“重金悬赏寻妻”虚假信息博取眼球,被依法查处详情:近日,有网民在网络平台发布寻人视频,声称“重金悬赏!妻子失踪,5000元等你来拿”,发布地点显示在云南大理古城地区。经属 ...[详细]
-
作为原神须弥沙漠区域的核心探索内容之一,大赤沙海地区的17座元素方碑隐藏着丰富的宝箱奖励与世界观线索。这些方碑不仅需要玩家精准定位,更需掌握环境机制与元素互动的深层逻辑。将基于3.4版本实测数据,提供 ...[详细]